• 关于Apache Spark和Apache Flink如何选择的问题
  • 苦丁茶 发表于 2016/3/30 12:36:00 | 分类标签: Apache Flink
  • Spark Streaming和Flink都能提供恰好一次的保证,即每条记录都仅处理一次。与其他处理系统(比如Storm)相比,它们都能提供一个非常高的吞吐量。它们的容错开销也都非常低。之前,Spark提供了可配置的内存管理,而Flink提供了自动内存管理,但从1.6版本开始,Spark也提供了自动内存管理。这两个流处理引擎确实有许多相似之处,但它们也有着巨大的差异。近日,MapR Technologies产品经理Balaji Mohanam在公司内部的白板演示中比较了Apache Spark和Apache Flink的不同之处,用户可以参考这种比较做出选择。

    为了方便说明,Mohanam首先对批处理、微批处理和连续流操作符等三种计算模式进行了解释。批处理基本上处理静态数据,一次读入大量数据进行处理并生成输出。微批处理结合了批处理和连续流操作符,将输入分成多个微批次进行处理。从根本上讲,微批处理是一个“收集然后处理”的计算模型。连续流操作符则在数据到达时进行处理,没有任何数据收集或处理延迟。

    Apache Spark和Apache Flink的主要差别就在于计算模型不同。Spark采用了微批处理模型,而Flink采用了基于操作符的连续流模型。因此,对Apache Spark和Apache Flink的选择实际上变成了计算模型的选择,而这种选择需要在延迟、吞吐量和可靠性等多个方面进行权衡。

    随着数据处理能力的提高,企业开始认识到,信息的价值在数据产生的时候最高。他们希望在数据产生时处理数据,这就是说需要一个实时处理系统。但也不是所有情况都需要实时系统。Mohanam分别例举了一些适合微批处理或实时流处理的场景。比如有两个广告科技行业的场景:一个是聚合来自不同IP地址的不同IP请求,将IP归入黑名单或白名单;另一个是设法阻止一个黑名单IP的特定请求。前者使用微批处理就可以,而后者就需要实时流处理。再比如,在电信行业,统计特定用户使用的带宽,微批处理可能是一个更高效的方案,而网络异常检测就需要实时流处理了。也有一些场景,微批处理和实时流处理都适用,如在IoT行业查看特定工业设备的使用情况。

  • 请您注意

    ·自觉遵守:爱国、守法、自律、真实、文明的原则

    ·尊重网上道德,遵守《全国人大常委会关于维护互联网安全的决定》及中华人民共和国其他各项有关法律法规

    ·严禁发表危害国家安全,破坏民族团结、国家宗教政策和社会稳定,含侮辱、诽谤、教唆、淫秽等内容的作品

    ·承担一切因您的行为而直接或间接导致的民事或刑事法律责任

    ·您在编程中国社区新闻评论发表的作品,本网站有权在网站内保留、转载、引用或者删除

    ·参与本评论即表明您已经阅读并接受上述条款

  • 感谢本文作者
  • 作者头像
  • 昵称:苦丁茶
  • 加入时间:2013/6/19 0:00:00
  • TA的签名
  • 这家伙很懒,虾米都没写
  • +进入TA的空间
  • 以下内容也很赞哦
分享按钮